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Abstract 

We present a simple method, based on Bayes’ theorem, to fit binned data 

to one or more multi-source models. Assuming a Poisson probability for the 

count in each bin we can eliminate exactly the nuisance parameters from the 

likelihood function and arrive at a formula that can be broadly applied. We 

illustrate the method by showing how it can be used to estimate the top quark 

mass. 
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I. INTRODUCTION 

A problem that arises frequently in experimental physics is to fit binned 

data to a model consisting of a sum of N sources, taking due account of known 

uncertainties. The prototypical example is a 2-source model consisting of a 

sum of signal plus background. Barlow and Beeston [l] have provided perhaps 

the best solution to that problem within the framework of frequentist statis- 

tics. In this paper, we suggest an alternative Bayesian method of analysis 

which, we believe, has conceptual and practical advantages. 

First, we shall review briefly the conceptual basis of the method of Ref. 1, 

because it looks superficially similar to the one we propose and, therefore, 

one might be tempted to see no difference between the two. In frequentist 

statistics [2] a single data set is considered to be drawn from an ensemble of 

data sets. For the problem considered here each data set consists of a set of 

observed counts {D;} and N sets of source counts {Aji}, where i = 1, ..Mlabel 

thebinsandj = l,.. N the sources. We assume that the mean count in the ith 

bin, di, and the mean source counts, {ai;}, are related by di E C,“=, Pjaji. The 

quantity oji is the mean count for bin i of source i and pj is the corresponding 

source strength, given as a fraction of the mean count Ci aji of source j. 

Usually, the source counts {Aji} are the result of Monte Carlo calculations. 

If we assign a Poisson probability to the total count in each bin then we can 

write the likelihood function as 

qDl%P) = 
M exp( -di)dD’ 
l-I 
i=l 

Di! 
)( 

The likelihood function is just the sampling distribution for the M + N x 

M COUIltS. It contains N X M l.LUkflOWIl parameters Uji, plUS N UllkIlOWIl 

parameters pj; The parameters of interest are the source strengths pj; the 

parameters aji are, in the present context, nuisance parameters which we 

must get rid of to make progress. 

There is no general method to eliminate nuisance parameters from a like- 

lihood function in the frequentist approach [2]. What is done, in practice, is 

(14 

2 



to replace the nuisance parameters with their maximum likelihood estimates. 

Unfortunately, this does not guarantee their elimination from the sampling 

distribution of the estimates. Nor is there a guarantee that these estimates 

will always lie in the physical region. 

The analysis method we suggest here provides a natural and consistent 

framework to overcome the aforementioned problems. After describing the 

method we show how it can be used to perform a straightforward analysis of 

top quark mass data. 

II. THE METHOD 

Let M be the number of bins into which the data are divided. For each 

multi-source model, labelled by the discrete parameter K, we shall assign a 

Poisson probability to the count per bin and take our likelihood function to 

be 

M eq( -d;)dD’ 
JW~,PJ) = n 

i=l 
Di! ’ 

The second product in Eq. (1.1) is interpreted as an informative prior prob- 

ability 

Aji 
Q( a, K) = fi fi expt--$aji , 

i=l j=l 

for the nuisance parameters aji. 

The unknowns are the parameters pj and aji. In order to make inferences 

about the former the nuisance parameters aji must be eliminated. According 

to probability theory [3] th e g eneral way to do this is to use Bayes’ theorem 

PC=, P, KID) = 
L(Dla,p,K)Qta,K)q(p,K) 

CK s, s, J?Db, P, WQ(=, K)dP, K)’ 

and then marginalize (that is, integrate) the posterior probability 

P(a,p, KID) with respect to a, to obtain, 

w 

(2.2) 

(2.3) 

f’(p, KID) = / P(u, P, KID). 
a 
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The function q(p, K) is, for a specified model K, the prior probability for the 

source strengths pj, knowledge of which we assume is logically independent 

of knowledge of the parameters aj;. 

It is convenient to define the global likelihood function I( Dip, K) by 

/(DIP, K) = / L(Dl=,p, K)Q(=, K), P-5) 
a 

and write Eq. (2.4) as 

WP7 K) !7(P7 K) 

‘(” KID) = & & l(DIP, K) q(P, K)’ 

With our choices for the prior probability, Eq. (2.2), and the likelihood func- 

tion, Eq. (2.1), it is possible to perform the N x M-dimensional integral in 

Eq. (2.4) exactly and obtain the formula 

l(D,p,K)= fi 5 fi 

kj 

i=l kl,..kN=O j=l 
(1 + pl;ji+kj+l ’ 

where the indices kj satisfy the multinomial constraint C,“=i kj = Die The 

calculation is outlined in the appendix. 

We again stress the importance of being clear about the conceptual basis 

of the method; in particular, we should understand what P(p,KID) is and 

what it is not. The function P(p, KID) d escribes, in a probabilistic manner, 

what we know about the parameters after having acquired a particular data 

set {Di} and after having performed a particular set of Monte Carlo calcu- 

lations, leading to a particular distribution of bin counts {Aji}. It does not 

describe the sampling distribution of the parameters pj. The source strengths 

pj are presumed to have fixed values, albeit unknown. If nonetheless we wish 

to interpret P(p, KID) in frequency terms we would have to posit an ensem- 

ble of hypothetical universes each with differing sets of fixed source strengths. 

We see, however, neither a conceptual nor a practical advantage in this ar- 

tiflce over simply interpreting P(p, Kj D) as a weight between zero and one 

that describes how well we know the parameters pj after we have acquired 

a particular data set. Likewise, the prior probability q(p, K) is a weight we 

(2.6) 

P-7) 
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assign consistent with whatever pertinent information we might have about 

the parameters pj, irrespective of the information provided by the data set. 

III. ESTIMATING PHYSICAL QUANTITIES 

When we have several models, each labelled by the parameter K, we can 

calculate the probability of each model K by marginalizing P(p, KID) with 

respect to p: 

WW) = / J’(P, KID). 
P 

An interesting application of Eq. (3.1) is when K labels the elements of a 

set of models that differ in the value of some physical quantity; for example, 

the top quark mass. In the case of top anti-top events, formed in the reaction 

pp + tt; P(KID) would pick out the background plus signal model with the 

top quark mass that best fits the data. Moreover, an optimal estimate of the 

physical quantity, in the sense that the mean squared deviation from the true 

value is minimized, is the mean of the posterior probability. Therefore, we 

would expect to obtain a good estimate of the top quark mass and an estimate 

of the uncertainty from 

+&= c mK WV), 

& = &&P(K~D) - ti2, 
K 

where ?‘nK is the assumed top quark mass for model K and uh is one (of 

many) measures of the width of the posterior distribution (assuming uni- 

formly spaced mK). This measure of uncertainty does not have a frequency 

interpretation because P( KI D) is not a sampling distribution. 

An alternative way to proceed would be to use the evidence procedure [4] 

which, for our case, entails inserting the maximumlikelihood estimates of p, lj, 

into P(p, KID) and then using either the mean of I’(#, KID), or the position 

of its peak (or equivalently the position of the mininum of - ln P(+, K(D)) as 

(3-l) 

(3.2) 
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an estimate. It can be shown that the maximumlikelihood estimates 6 satisfy 

the relation 

IV. SYSTEMATIC UNCERTAINTY 

There is no well-founded procedure to deal with systematic uncertainty 

in frequentist statistics. One either resorts to the artifice mentioned earlier 

or one abandons conceptual consistency and grafts Bayesian notions onto 

frequentist procedures [5]. In the Bayesian approach systematic uncertainty 

can be treated in a unified consistent manner. It is also straightforward and 

requires merely a reinterpretation of the label K. 

To render the discussion more concrete let us suppose that we have gen- 

erated a series of models K that differ not only in the physical quantity of 

interest, here the top quark mass, but also in the value of the renormaliza- 

tion scale used to calculate the models. The usual practice is to calculate 

the models at a small number of different scales. The renormalization scale 

is an example of a nuisance parameter that is unphysical and whose value is 

arbitrary. To the degree that calculations are sensitive to the renormalization 

scale the arbitrariness of the latter will introduce further uncertainty in the 

models. That uncertainty, however, can be accounted for by simply summing 

Eq. (2.6) over the models K that differ only by the value of the assumed scale. 

That is, for a given top quark mass, we marginalize P(p, KID) with respect 

to the renormalization scale. To take into account the uncertainty due to all 

models considered, we marginalize with respect to all models K: 

PCPID) = c P(p,KID). 
K 

(44 

Thus can we account for all uncertainties irrespective of how we label them: 

statistical, systematic or theoretical. 
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V. ESTIMATING THE TOP QUARK MASS 

To illustrate the method we apply it to the problem of estimating the top 

quark mass (mt), assuming a set of signal plus background models. For this 

special case Eq. (2.7) can be written as 

M Di 

~(D[PI, PZ,K) = n C Ck,l CDi-k,2, 
i=l k=O 

where the terms C may be calculated using the recursion formula 

CO,j = (1 + pj)-(Aji+l)r 

c,,j = (&) (~)C,.-l,j~ (r=l***Di, j-1,2), 

which is convenient for numerical calculations. 

The top quark was discovered recently in proton anti-proton collisions at 

the Fermilab Tevatron by the CDF and DO collaborations [6]. At present, the 

most accurate measurement of the top quark mass comes from the analysis of 

the decay mode ti -+ W+bW-i -+ Zvbqijh where one W boson decays into a 

lepton (either a muon or an electron) and a neutrino, and the other W boson 

decays into a quark anti-quark pair. The dominant background in this decay 

mode comes from the quantum chromodynamic (QCD) production of a W 

boson in association with multiple jets (H’tjets). 

To obtain an estimate of the top quark mass one can use any kinematic 

quantity in the event that depends on the mass. For simplicity, we have gen- 

erated hypothetical distributions of fitted masses for signal and background 

models to roughly simulate the data sets obtained by the CDF and DO ex- 

periments. The CDF and DO fitted mass data sets are derived by fitting 

each observed event to the top quark decay hypothesis. For the signal, our 

hypothetical fitted mass distributions are taken to be Gaussian with mean at 

the top quark mass and a standard deviation of 30 GeV/c2. We have gener- 

ated 25 such distributions for top quark masses in the range 110 GeV/c2 to 

230 GeV/c2, in steps of 5 GeV/c 2. To model the background we superpose, 

in the ratio of 10 to 3, two Gaussian distributions centered at 110 GeV/c2 

(5.1) 

(5.2) 
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and 140 GeV/c2, and with standard deviations of 15 GeV/c’ and 25 GeV/c2, 

respectively. The simulated data are binned in forty uniform bins in the mass 

range of 80 GeV/c2 to 280 GeV/c2. The simulated distributions of signal (for 

mt = 170GeV/c2) and background are shown in Fig. l(a)-(b). 

We then generated data sets of increasing sample size by random sampling 

from the signal (mt = 170 GeV/c2) and background fitted mass distributions. 

We use a signal to background ratio of one and we use binomially distributed 

counts. The likelihood Eq. (5.1) is then evaluated for each data set for each 

signal plus background model to obtain the posterior probability distribution, 

P(KID), as a function of the assumed top quark mass. We estimate the mass 

and error as described above. The results are shown in Fig. 2. It can be seen 

that as the data set grows in size the estimated top quark mass converges to 

the true top quark mass and the uncertainty in the mass estimate reduces. 

To demonstrate that the method produces reliable results on average even 

for small data sets we have carried out ensemble studies. We generated an 

ensemble of 1000 data sets (for mt = 170 GeV/c2). The sample size for each 

data set is 40 events and the signal to background ratio is chosen to be one as 

before. In Fig. 3 we show the distributions of estimated top quark masses and 

errors. The estimated top quark mass peaks around the true top quark mass 

and the most probable error is approximately equal to the standard deviation 

of the distribution of estimated masses. 

We noted above that the strength pj is given as a fraction of the true 

total source count xi a+. But how should we proceed if we wish to have an 

estimate of the mean number of events from source i? Let nj denote that 

quantity. By definition, nj E pj Ci aj;. Therefore, to get an estimate fij of 

nj we need an estimate of Ci oji. An obvious estimate is Ci Aji. Another, 

less obvious, one - suggested by Eq. (3.3) - is Ci Aji f M, where M is 

the number of bins. The two estimates merge when Ci Aji >> M, which is 

the most common situation. It is an open question (which we are currently 

investigating) whether it is possible to derive a useful exact expression for the 
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posterior probability P(n, KID) rather than P(p, KID). If so, one would be 

able to derive another estimate of nj from the marginal posterior probability 

VI. CONCLUSIONS 

From the Bayesian perspective the frequentist method has a simple inter- 

pretation. The method is equivalent to 1) choosing a flat prior probability for 

the parameters p (without, however, restricting the values these parameters 

might assume), a flat prior for the discrete parameter K, and a gamma prior 

(as described above) for the nuisance parameters a; and 2) tiding the mode 

of the posterior probability P(u,p, KID). The uncertainty in p, however, is 

obtained using the sampling distribution of the estimates $. This is simply 

one of several different estimates that could be derived from the posterior 

probability P( a, p, KID). In our method we have restricted the parameters 

p to be always positive and we compute the mean, rather than the mode, 

not of the full posterior probability P(a,p, KID) but rather of the marginal 

distributions of p, that is, of P(p, K(D). 

Bayesian reasoning leads to a well-founded mathematical procedure to 

treat all uncertainties, to combine results and to compute the conditional 

probability of a model. We have given a simple, useful and practical applica- 

tion of these ideas. 
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APPENDIX 

Equation (2.5) can be written as 

z(DIp, K) = fi & /- daliexP[-tl +/:)alila;:L' . . . 

I' 0 1:. 

. . . 

J 
mdUNi 

exp[-(1 t PN)UNi]&yi 

0 ANi! 

the sum over sources gives 

Di = Di! ~ P%:: . . . pkN a$ I 

k 1 ,...,kN=O 
kl! kr\r! ’ 

which when inserted into the equation above leads to 

Z(DIP, K) = fi f?J fi A lrn daj; exp[-(I + Pj)aji]a,q’i+k’j, 
i=l kl ,...,kN=O j=l Aji!kj! O 

where, for each count Di, the kj satisfy the multinomial constraint CyY, kj = 

Di. The N x M dimensional integral separates thus into N x M one- 

dimensional integrals that are readily evaluated in terms of gamma functions. 

When this is done we obtain Eq. (2.4). 

P-1) 

(7.2) 

(74 
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Figure Captions 

Fig. 1. The distributions of fitted mass for simulated (a)top quark events 

with mass of 170 GeV/c2 and (b)background. 

Fig. 2. (a) The posterior probability distribution for one hypothetical 

experiment with a sample size of 40 events and a signal to background ratio 

of one. The estimated top quark mass and error are also shown. (b) The 

estimated top quark mass, as a function of sample size, averaged over en- 

sembles of 200 experiments. The error bars indicate the 68% widths of the 

distributions of mass estimates. 

Fig. 3. Distributions of (a) estimated top quark mass and (b) estimated 

RMS error on the mass from a study of an ensemble of 1000 hypothetical 

experiments. Note that the most probable error is approximately equal to 

the standard deviation of the mass distribution 
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FIGURES 

FIG. 1. 
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FIG. 2. 
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FIG. 3. 
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